Polyplody is an important evolutionary force. Recent estimates suggest that 70% of all angiosperms have experienced one or more episodes of polyploidization. The frequency of polyploidy in pteridophytes could be as high as 95% (Ref. 1). Recent evidence suggests that polyploidy has also played an important role in the evolution of other eukaryotes. Two episodes of polyploidy are hypothesized for the vertebrates, and the entire genome of yeast was duplicated anciently. Thus, elucidating the causes and consequences of polyploid evolution is central to understanding not only the diversification of angiosperms and pteridophytes, but other eukaryotic lineages as well. During the past few years, the study of polyploidy has experienced a renaissance owing, in part, to genetic studies, both at the population and genome levels, prompting a dramatic reformulation of several crucial aspects of polyploidy. There has also been renewed interest in the mechanisms and rates of polyploid formation and polyploidy and plant–insect interactions.

Origins of species

An important recent discovery is that most taxonomically recognized polyploid species are of multiple origin. This realization has shattered earlier perceptions of polyploids as genetically depauperate species, perhaps representing evolutionary dead-ends. Recurrent origins of polyploid species are the rule, not the exception. Soltis and Soltis reviewed over 30 examples of polyploid species of recurrent origin, most of which are angiosperms and ferns, with a few bryophytes. During the past five years, molecular investigations have continued to reveal that multiple origins typify polyploid plant species, with over 15 examples of well studied polyploids of recurrent origin

Polyplody has played a major role in the evolution of many eukaryotes. Recent studies have dramatically reshaped views of polyploid evolution, demonstrating that most polyploid species examined, both plant and animal, have formed recurrently from different populations of their progenitors. Populations of independent origin can subsequently come into contact and hybridize, generating new genotypes. Because of the frequency of polyploidy in plants, many recognized species are probably polyphyletic. Extensive and rapid genome restructuring can occur after polyploidization. Such changes can be mediated by transposons. Polyploidization could represent a period of transsilence, during which genomic changes occur, potentially producing new gene complexes and facilitating rapid evolution.

Douglas and Pamela Soltis are at the Dept of Botany, Washington State University, Pullman, WA 99164, USA (dsolts@mail.wsu.edu; psolts@wsu.edu).

Examples (list available from authors). Lineages of independent origin can also differ morphologically. Several studies also suggest that polyploid animal species have arisen recurrently, including ostracodes and the treefrog Hyla versicolor. In complete contrast to traditional views (Fig. 1), there are few examples of well studied polyploid taxa for which only a single origin appears likely: possible examples include the peanut Arachis (Brassicaceae) and the salt marsh grass Spartina (Brown, R.D., ed.). Polyploids constitute a significant proportion of both angiosperm and fern species. The fact that recurrent origins typify those taxa investigated has important implications. For diploids, we think in terms of the origin of species, but for many, perhaps most, land plants it appears more appropriate to refer to the origins of recognized species. If we consider monophyly as a necessary criterion for recognizing species, most taxonomically recognized polyploid species should be divided into a number of cryptic phylogenetic species. The application of a phylogenetic species concept to polyploids of recurrent origin deserves additional attention, but is beyond the scope of this article.

Extent of multiple origins

For most examples of recurrent polyploidization, few populations have been studied. Hence, the actual extent of multiple origins for most polyploids is unknown, but is likely to have been underestimated. For polyploids studied extensively, the number of multiple polyploidizations is often high. Three origins of autotetraploid Haplochelone grossulariifolia were suggested originally, but more thorough population sampling and the use of additional markers raised that number to five. Draba norvegica (Brassicaceae) has formed at least 13 times
in a small area of Scandinavia20,21. \textit{Tragopogon miscellus} and \textit{T. minus}, two allopolyploid species of goatsbeard, may have formed as many as 20 and 12 times, respectively, in eastern Washington and adjacent Idaho (USA) in only the past 60–70 years; multiple polyploidizations have even occurred within single small towns20,21. Studies of recent allopolyploidy in \textit{Tragopogon} indicate that multiple origins can occur frequently over a short timespan and in a small area.

Close encounters

Recent polyploidization involving genetically different diploids can create a series of genetically distinct polyploid populations. Gene flow between polyploid populations of independent origin might permit recombination and the production of additional genotypes (Fig. 1). Recent studies suggest that this occurs in nature. In species of \textit{Draba}, distinct genotypes of separate polyploid origins co-occur in the same polyploid populations, along with putative recombinants20. Autopolyploid populations of \textit{H. grossulariifolia} often comprise a mosaic of genotypes representing separate origins25. Application of RAPD (random amplified polymorphic DNA) markers to the allopolyploid \textit{Tragopogon} species indicates that populations of separate origin come into contact22. The short time since the origin of \textit{Tragopogon} indicates the rapidity with which polyploid genotypes can come into contact after their formation.

The arctic flora

On a broad geographical scale, recurrent polyploidization and subsequent interbreeding of genotypes are best seen in the arctic flora, where diploids and polyploid derivatives exhibit overlapping circumpolar distributions. Traditionally, each polyploid was thought to have formed once; subsequent migration was considered responsible for establishing a broad geographical distribution. Genetic data suggest, instead, that diploid progenitors co-occur repeatedly on a circumpolar scale; polyploid species of \textit{Draba} and \textit{Saxifraga} have formed repeatedly from their diploid progenitors23,24. Multiple polyploid events from genetically and morphologically different diploid populations may yield a complex of different genotypes and morphotypes at the polyploid level. These genotypes ultimately come into contact and hybridize; subsequent segregation and recombinant generation can even create new genetic and morphological diversity. This scenario, repeated in numerous lineages, would explain the well-known taxonomic uncertainty surrounding polyploid complexes in the arctic.

Genome restructuring

Another, more recent discovery is the extent and rapidity of genome reorganization in polyploids (Fig. 2). Modification of parental diploid genomes, once in a common polyploid nucleus, has until recently been considered minimal. However, chromosome painting, genetic mapping, and comparative genetics provide evidence for both intra- and intergenomic reorganization of polyploid genomes; this reorganization can be extensive and occur rapidly. Chromosome painting (i.e., using chromosome-specific fluorescent markers) has identified intergenomic chromosomal rearrangements in polyploids relative to their diploid progenitors; nine such translocations have been detected in allopolyploid tobacco (\textit{Nicotiana}), five in intergenomic translocations in allotetraploid oats \textit{Avena macrocarpa}, and 18 in allohexaploid \textit{Avena sativa}25. Furthermore, intergenomic translocations have been detected in F\textsubscript{1} hybrids, demonstrating the rapidity with which such changes can occur when divergent genomes are placed in a common nucleus26.

Dramatic evidence for genome restructuring in polyploids comes from comparative genetics24,25. Although gene order is generally conserved over millions of years within plant families, genome restructuring also occurs, and this is more rapid and extensive in polyploids than in diploids27. Evidence for extensive and rapid genomic change is available for \textit{Brassica} via the analysis of naturally occurring and synthetic polyploids. Chromosome mapping suggests that the naturally occurring allopolyploid genomes exhibit extensive reorganization compared with their diploid progenitors24,25. Extensive genomic change was detected in only a few generations in synthetic allopolyploid \textit{Brassica} lines that were initially completely homoygous27. Furthermore, the degree of change in the diploid genomes present in the synthetic allopolyploids agrees with mapping and genetic data for the naturally occurring polyploids. Therefore, \textit{Brassica} provides two important suggestions regarding genomic change after polyploidization: (1) the more divergent the parents, the greater the subsequent genomic change in the polyploid; and (2) the nuclear genome of maternal origin experiences less change than the paternal contribution. Results for cereals similarly indicate that rapid genomic changes can occur in newly synthesized allopolyploids28, and that the extent of genomic change in a polyploid can be influenced by cytoplasmic-nuclear interactions29,30. In a new allopolyploid, there are adverse interactions between the nuclear genome contributed by the male parental diploid and both the nuclear and cytoplasmic genomes contributed by the maternal diploid (in most angiosperms, cytoplasmic organelles are maternal inherited); genome adjustments must occur to restore nuclear-cytoplasmic compatibility31.

Genomic maps are presently available for several grasses, including wheat (\textit{Triticum}), barley (\textit{Hordeum}), rye (\textit{Secale}), and rice (\textit{Oryza})32–34. Application of RAPD (random amplified polymorphic DNA) markers to the allopolyploid \textit{Tragopogon} species indicates that populations of separate origin come into contact22. The short time since the origin of \textit{Tragopogon} indicates the rapidity with which polyploid genotypes can come into contact after their formation.

![Diagram](image_url)

Fig. 1. Comparison of (a) traditional view of polyploid formation with (b) new or revised view. The traditional view envisioned each polyploid species forming only once, resulting in a new species that was genetically uniform (or nearly so). The new view suggests that each polyploid species forms over and over again from different parental genotypes generating a diverse array of polyploid genotypes. Subsequent hybridization among these polyploid genotypes and recombination result in additional genetic variability.
Polyploidy and transposable elements

Transposable elements (TEs) might facilitate rapid genome restructuring after polyploidization. Matzke and Matzke\(^4\) argue that polyploidy permits extensive gene modification by TEs because, by nature, polyploid genomes contain duplicate copies of all genes, hence, they are well buffered from the deleterious consequences of transposition. Transposable elements will tend to multiply and be maintained in polyploids because the additional copies of genes they maintain will compensate for the loss of altered expression of genes that might result from TE insertion. The end result could be higher genomic restructuring in polyploids compared with their diploid progenitors.

Recent studies suggest the spread of DNA repeat families from one parental diploid genome to the other in allopolyploid cotton, *Gossypium*. In cotton, most dispersed repeat families are restricted to A-genome diploids and are absent from D-genome diploids. However, in the allopolyploids (which combine the A and D genomes), the A-genome repeats have spread to the D genome, perhaps by replicative transposition\(^4\).

Transposable elements might also have been the driving force in the evolution of gene silencing mechanisms, such as methylation and heterochromatin formation, throughout eukaryotes in general\(^4\). These 'global repression mechanisms might have evolved as adaptive responses to the selfish drive of TEs to expand in number in a host genome\(^4\). Matzke and Matzke\(^4\) argue that if TEs are indeed the primary targets of methylation and other global repression mechanisms and that polyploids tolerate transposition because of their duplicate genes, then it follows that polyploid genomes will not only contain more
TEs than diploid genomes, but will also be more highly methylated. Matzke and Matzke\(^4\) suggest that a rough correlation exists. Widespread ("global") methylation is found in vertebrate genomes, which represent several rounds of polyploidization, as well as in polyploid plant genomes, which contain a high number of TEs. In contrast, "fractional" (partial), rather than global, methylation occurs in invertebrates and true diploid plants. For example, Arabidopsis, which is ancestral to a small number of TEs, whereas ~50% of the maize genome (an ancient polyploid) is composed of interspersed repetitive DNA. Despite a rather limited number of TEs, Arabidopsis has a small genome size (260 million base pairs). These retrotransposons are much less abundant, however, in diploid grasses, such as rice\(^4\). The hypotheses of Matzke and Matzke are provocative; we need more data.

Evolutionary implications

The genetic and evolutionary implications of recurrent polyploidization and genome reshuffling are obvious in that both processes represent important sources of genetic variation. Population-level genetic studies of polyploid plants and animals indicate that polyploidization should no longer be viewed as a rare event producing a polyploid species of unique origin and uniform genotype. Instead, polyploid species can maintain high levels of segregating genetic variation through the incorporation of genetic diversity from multiple populations of their diploid progenitors\(^3,12,13,14,15,22,23\). Polyploid genotypes ultimately come into contact via migration and hybridize—with subsequent segregation and recombination generating even more genetic complexity. Concomitantly, the genome reshuffling of polyploid genomes is an important additional source of genetic diversity in polyploid species.

Polyploidy as translineage

Templeton\(^\text{a}\) suggested that diploid specialization involves translineage, a period during which the genome is more malleable to or tolerant of change, such as recombination. Growing evidence suggests that polyploidy should also be viewed as translineage. The extensive genomic change detected in only five generations in synthetic allopolyploid Brassica\(^\text{b}\), as well as the chromosomal rearrangements detected in hybrid Nicotiana\(^\text{c}\), support this view. The presence of the same chromosomal changes throughout the populations of a polyploid species suggests that genome reorganization accompanied speciation, or occurred shortly thereafter. Species-wide intergenomic translocations have been detected in several angiosperms, including tetraploid maize, wheat, Arabidopsis and members of Solanaceae. These studies will provide fine-scale genomic maps for polyploid plants including maize, the polyploid brassicas, potato and tobacco. Such data will provide additional insights into genome evolution in polyploids. It is important, however, that comparative genetics be applied not only to crops and close relatives, but also to diploids and their polyploid derivatives in natural populations.

References

15. Ting, T.J. and Hebert, P.D.N. (1996) Evolutionary interactions between sexual and asexual taxa of Cypridina (Ostracoda: Cyprididae), Evolution 43, 1803–1816

TREE vol. 14, no. 9 September 1999

REVIEWS

Involves the evolutionary and ecological consequences of multiple origins of polyploid species. What is the extent of gene flow among polyploid lineages of separate origins? Are different genomic rearrangements detected in populations of separate origins? What are the genetic, as well as morphological and physiological, consequences of multiple origins? What are the genetic, morphological and physiological consequences of reciprocal maternal parentage in populations of separate origins? A second suite of questions involves genome organization. How is it prevalent in recently formed polyploids? What is the role of TEs in genome restructuring and gene silencing? Do autoploids and allopolyploids differ in the extent and frequency of genome restructuring? Progress in the area of comparative genome organization will be facilitated greatly by large-scale genomic projects already under way for model organisms such as maize, wheat, Arabidopsis and members of Solanaceae. These studies will provide fine-scale genomic maps for polyploid plants including maize, the polyploid brassicas, potato and tobacco. Such data will provide additional insights into genome evolution in polyploids. It is important, however, that comparative genetics be applied not only to crops and close relatives, but also to diploids and their polyploid derivatives in natural populations.
REVIEWS

352

35

Hibbard (Graminaceae): origin and genetic variability, Rev. J.
Linseed Sci. 41, 113–126

9 Buysson, K.S. et al. Multiple origins of polyplody and the
8, 235–262

consequences of polyplody in arctic ﬂowers (Brassicaceae), Ecol.
Trends Plants 6, 111–124

Cook, L.M. et al. (1998) Multiple independent formations of
Teosinte tepals (Adenocarpeae): evidence from RAPD
markers, Mol. Ecol. 7, 1295–1302

Brochmann, C. et al. (1995) Molecular evidence for polyplody
origins in Senequie pastureceae): the narrow arctic endemic
S. exilicaulis and its widespread allies, Am. J. Bot. 82, 113–121

Letich, J.J. and Bennett, M.D. (1997) Polyplody in angiosperms,
Trend Plant Sci. 2, 470–476

10 years, Science 282, 456–458

Wezel, J.F. Genome evolution in polyplody, Plant Mol. Biol. (in press)

mapping in Brassica, Genetics 144, 3193–3203

Hu, J. et al. (1998) Linkage group alignment from four independent
Brassica stonnioides RIL maps, Genome 41, 226–235

Song, K. et al. (1995) Rapid genome change in synthetic polyplody
Nat. Acad. Sci. U. S. A. 92, 7719–7723

nearly synthesized amphiploids of Triticum and Aegilops, II.
Changes in low-copy coding DNA sequences, Genome 41, 565–582

Gill, B.S. (1994) Nuclear-cytoplasmic interaction (NCI) hypothesis of
genome evolution and speciation in polyplody plants, in
Proceedings of the Kihara Memorial International Symposium on
Cytoplasmic Engineering in Wheat (Kusada, T. and Kashiwai, T.,
edits), pp. 48–53, Yokohama, Japan

group 2, Genome 38, 316–324

Devas, K.M. et al. (1991) Structural evolution of wheat
chromosomes 4A, 5A, and 7B and its impact on recombination,
Theor. Appl. Genet. 85, 1–16

organization: evolution of a legume genome, in Genomes of Plants
Animals, 2nd Szederlek Genetics Symposium (Gautschi, J.P. and
Flavell, R.B., edits), pp. 129–151, Plenum Press

Gaut, B.S. and Doley, J.F. (1997) DNA sequence evidence for the
U. S. A. 94, 6080–6084

origin of maize, Trends Genet. 14, 327–332

Chen, M. et al. (1997) Microsynteny in A0B homologous regions of
U. S. A. 94, 3025–3035

Zing, R. et al. (1998) Detailed alignment of Zeaerum and
Sorghum chromosomes comparative organization of closely
related diploid and polyploid genomes, Genetics 150, 1593–1096

thaliana and Brassica napus indicates that Brassica genomes have
evolved through extensive genome replication accompanied by
chromosome fusions and frequent rearrangements, Genetics
150, 1217–1226

Quira, C.F. (1998) Molecular markers and their applications to
genetics, breeding and the evolution of brassica, J. Apic. Hort.
Sci. 67, 1148–158

Matute, M.A. and Matute, J.A.M. (1998) Polyploidy and transposons,
Trends Ecol. Evol. 13, 241

Wobol, J.F. et al. Genes, peas, and genomes: reconstructing the
history of cotton, in Plant Evolution in Man-made Habitats (Proceedings of the VIII International Symposium of the
International Organization of Plant Biosystematists (van
Raanen, L.W.D and den Nijl, M.J.M., eds), Rijksherbarium/Hortus
Botanicus, Leiden University, Leiden (in press)

macroevolution, Trends Ecol. Evol. 13, 45–46

U. S. A. 100, 1767–1703

Templeton, S.B. (1986) The theory of speciation via the founder
principle, Genetics 113, 1011–1018

Zhao, J. et al. (1999) Dispersed repetitive DNA has spread to new
genomes since polyplody formation in cotton, Genome Rev. 8,
473–482

Current trends
– articles of ecological or evolutionary interest in recent issues of other Trends magazines

• Variation and evolution of the citric-acid cycle, Martin H. Huyten, Thomas Dandaker and Peer Bork
Trends in Microbiology 7, 281–291 (July 1999)

• Evolution of Wolbachia piipientis transmission dynamics in insects, Elizabeth A. McGraw and
Scott L. O’Neill Trends in Microbiology 7, 297–302 (July 1999)

• Possible stages in the evolution of language capacity, Ray Jackenda/Trends in Cognitive Sciences 3,
272–279 (July 1999)

• Nucleotide sequence databases: a gold mine for biologists, Akihico Pandey and Fran Lewitter
Trends in Biochemical Sciences 24, 276–280 (July 1999)

• The evolution of new structures: clues from plant cytoskeletal genes, Richard B. Meagher,
Elizabeth C. McKinney and Angela V. Vitale Trends in Genetics 15, 278–284 (July 1999)

• Ethylene perception and signalling: an evolutionary perspective, Anthony B. Bleecker
Trends in Plant Science 4, 269–274 (July 1999)

• Sustainable development: how can biotechnology contribute? Bernhard Zeichendorf
Trends in Biotechnology 17, 219–225 (June 1999)

• Structure and evolution of the extended B7 family, J. Henry M.M. Miller and P. Pontarotti
Immunology Today 20, 285–288 (June 1999)

• Evolutionary change in the functional speciﬁcity of genes, Andreas Eizinger, Benno Jungblut and
Ralf J. Sommer Trends in Genetics 15, 197–202 (May 1999)